THE AI TODAYTHE AI TODAY

arXiv:2602.05598v1 Announce Type: cross
Abstract: Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce ‘CAViT’, a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.

By Admin

Leave a Reply

Your email address will not be published. Required fields are marked *